Cross Validation of Class Predictions

Kevin R. Coombes

August 4, 2017

Contents

1 Introduction 1
2 A Simple Example 1
3 Testing Multiple Models 3
4 Filtering and Pruning 4

1 Introduction

When building models to make predictions of a binary outcome from omics-scale data, it is especially useful to thoroughly cross-validate those models by repeatedly splitting the data into training and test sets. The CrossValidate package provides tools to simplify this procedure.

2 A Simple Example

We start by loading the package

> library(CrossValidate)

Now we simulate a data set with no structure that we can use to test the methods.

> set.seed(123456)
> nFeatures <- 1000
> nSamples <- 60
> pseudoclass <- factor(rep(c("A", "B"), each = 30))
> dataset <- matrix(rnorm(nFeatures * nSamples), nrow = nFeatures)

Now we pick a model that we would like to cross-validate. To start, we will use K nearest neighbors (KNN) with $K = 3$.

> model <- modeler5NN

The we invoke the cross-validation procedure.

> cv <- CrossValidate(model, dataset, pseudoclass, frac = 0.6, nLoop = 30)
By default (verbose = TRUE), the cross validation procedure prints out a counter for each iteration. This behavior can be overridden by setting verbose = FALSE.

```r
> summary(cv)
```

Cross-validation was performed using 60 percent of the data for training. The data set was randomly split into training and testing sets 30 times.

Training Accuracy:

```
sens   spec   acc   ppv   npv
Min.  0.5555556 0.3888889 0.5833333 0.5600000 0.5789474
1st Qu. 0.7222222 0.5000000 0.6250000 0.6250000 0.6593750
Median 0.8055556 0.6111111 0.7083333 0.6666667 0.7647059
Mean 0.7851852 0.6074074 0.6962963 0.6705333 0.7518889
3rd Qu. 0.8888889 0.7222222 0.7500000 0.7318711 0.8221925
Max. 1.0000000 0.7777778 0.8333333 0.8000000 1.0000000
```
Validation Accuracy:

<table>
<thead>
<tr>
<th></th>
<th>sens</th>
<th>spec</th>
<th>acc</th>
<th>ppv</th>
<th>npv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.2500000</td>
<td>0.0833333</td>
<td>0.2916667</td>
<td>0.3529412</td>
<td>0.1428571</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.5000000</td>
<td>0.3333333</td>
<td>0.4583333</td>
<td>0.4593301</td>
<td>0.4093750</td>
</tr>
<tr>
<td>Median</td>
<td>0.6250000</td>
<td>0.4166667</td>
<td>0.5208333</td>
<td>0.5147059</td>
<td>0.5227273</td>
</tr>
<tr>
<td>Mean</td>
<td>0.6083333</td>
<td>0.4194444</td>
<td>0.5138889</td>
<td>0.5163261</td>
<td>0.5015829</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>0.7291667</td>
<td>0.5833333</td>
<td>0.5729167</td>
<td>0.5846154</td>
<td>0.5714286</td>
</tr>
<tr>
<td>Max.</td>
<td>0.9166667</td>
<td>0.6666667</td>
<td>0.7500000</td>
<td>0.6875000</td>
<td>0.8750000</td>
</tr>
</tbody>
</table>

The summary reports the performance separately on the training data and the testing data. In this case, KNN overfits the training data (getting roughly 70% of the “predictions” correct) but is no better than coin toss on the test data.

3 Testing Multiple Models

A primary advantage of defining a common interface to different classification methods is that you can write code that tests them all in exactly the same way. For example, let’s suppose that we want to compare the KNN method above to the method of compound covariate predictors. We can then do the following.

```r
> models <- list(KNN = modeler5NN, CCP = modelerCCP)
> results <- lapply(models, CrossValidate,
+       data = dataset, status = pseudoclass,
+       frac = 0.6, nLoop = 30, verbose = FALSE)
> lapply(results, summary)
```

$KNN

Cross-validation was performed using 60 percent of the data for training. The data set was randomly split into training and testing sets 30 times.

Training Accuracy:

<table>
<thead>
<tr>
<th></th>
<th>sens</th>
<th>spec</th>
<th>acc</th>
<th>ppv</th>
<th>npv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.5000000</td>
<td>0.3333333</td>
<td>0.5833333</td>
<td>0.5555556</td>
<td>0.6086957</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.6805556</td>
<td>0.6111111</td>
<td>0.6666667</td>
<td>0.6557971</td>
<td>0.6710526</td>
</tr>
<tr>
<td>Median</td>
<td>0.7777778</td>
<td>0.6666667</td>
<td>0.6944444</td>
<td>0.6830144</td>
<td>0.7416667</td>
</tr>
<tr>
<td>Mean</td>
<td>0.7648148</td>
<td>0.6555556</td>
<td>0.7101852</td>
<td>0.6945616</td>
<td>0.7440793</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>0.8333333</td>
<td>0.7222222</td>
<td>0.7500000</td>
<td>0.7385584</td>
<td>0.7894737</td>
</tr>
<tr>
<td>Max.</td>
<td>0.9444444</td>
<td>0.8333333</td>
<td>0.8235294</td>
<td>0.8235294</td>
<td>0.9230769</td>
</tr>
</tbody>
</table>

Validation Accuracy:

<table>
<thead>
<tr>
<th></th>
<th>sens</th>
<th>spec</th>
<th>acc</th>
<th>ppv</th>
<th>npv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.4166667</td>
<td>0.0833333</td>
<td>0.3750000</td>
<td>0.3846154</td>
<td>0.2000000</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.5208333</td>
<td>0.3333333</td>
<td>0.4583333</td>
<td>0.4575758</td>
<td>0.4196429</td>
</tr>
<tr>
<td>Median</td>
<td>0.5833333</td>
<td>0.3333333</td>
<td>0.4791667</td>
<td>0.4880952</td>
<td>0.4807692</td>
</tr>
<tr>
<td>Mean</td>
<td>0.6138889</td>
<td>0.3888889</td>
<td>0.5038889</td>
<td>0.5016199</td>
<td>0.4979113</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>0.6666667</td>
<td>0.5000000</td>
<td>0.5416667</td>
<td>0.5437063</td>
<td>0.5714286</td>
</tr>
</tbody>
</table>
Cross-validation was performed using 60 percent of the data for training. The data set was randomly split into training and testing sets 30 times.

Training Accuracy:
<table>
<thead>
<tr>
<th></th>
<th>sens</th>
<th>spec</th>
<th>acc</th>
<th>ppv</th>
<th>npv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Median</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mean</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Max.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Validation Accuracy:
<table>
<thead>
<tr>
<th></th>
<th>sens</th>
<th>spec</th>
<th>acc</th>
<th>ppv</th>
<th>npv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.000000</td>
<td>0.083333</td>
<td>0.250000</td>
<td>0.000000</td>
<td>0.125000</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.354167</td>
<td>0.416667</td>
<td>0.416667</td>
<td>0.400000</td>
<td>0.416667</td>
</tr>
<tr>
<td>Median</td>
<td>0.416667</td>
<td>0.458333</td>
<td>0.458333</td>
<td>0.454545</td>
<td>0.454545</td>
</tr>
<tr>
<td>Mean</td>
<td>0.413889</td>
<td>0.458333</td>
<td>0.436111</td>
<td>0.424659</td>
<td>0.430965</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>0.500000</td>
<td>0.583333</td>
<td>0.489583</td>
<td>0.490384</td>
<td>0.492647</td>
</tr>
<tr>
<td>Max.</td>
<td>0.666667</td>
<td>0.750000</td>
<td>0.625000</td>
<td>0.615384</td>
<td>0.636364</td>
</tr>
</tbody>
</table>

The performance of KNN with this set of training-test splits is similar to the previous set. The CCP method, by contrast, behaves much worse. It perfectly fits (and so overfits) the training data and consequently actually manages to do worse than chance on the test data.

4 Filtering and Pruning

Having a common interface also lets us write code that combines the same modeling method with different algorithms to filter genes (by something like mean expression, for example) or to perform feature selection (using univariate t-tests, for example). Many such methods are provided by the Modeler package on which CrossValidate depends. Here we show how to combine the KNN method with several different methods to preprocess the set of features.

Here we show how to do this the wrong way.

```r
> pruners <- list(ttest = fsTtest(fdr = 0.05, ming = 100),
+                 cor = fsPearson(q = 0.90),
+                 ent = fsEntropy(q = 0.90, kind = "information.gain"))
> for (p in pruners) {
+   pdata <- dataset[p(dataset, pseudoclass),]
+   cv <- CrossValidate(model, pdata, pseudoclass, 0.6, 30, verbose=FALSE)
+   show(summary(cv))
+ }
```
Cross-validation was performed using 60 percent of the data for training. The data set was randomly split into training and testing sets 30 times.

Training Accuracy:

<table>
<thead>
<tr>
<th></th>
<th>sens</th>
<th>spec</th>
<th>acc</th>
<th>ppv</th>
<th>npv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.8888889</td>
<td>0.8333333</td>
<td>0.9166667</td>
<td>0.8571429</td>
<td>0.8947368</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>1.0000000</td>
<td>0.9444444</td>
<td>0.9444444</td>
<td>0.9419935</td>
<td>1.0000000</td>
</tr>
<tr>
<td>Median</td>
<td>1.0000000</td>
<td>0.9444444</td>
<td>0.9722222</td>
<td>0.9473684</td>
<td>1.0000000</td>
</tr>
<tr>
<td>Mean</td>
<td>0.9814815</td>
<td>0.9444444</td>
<td>0.9629630</td>
<td>0.9488882</td>
<td>0.9827096</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>0.9722222</td>
<td>1.0000000</td>
<td>1.0000000</td>
</tr>
<tr>
<td>Max.</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
</tr>
</tbody>
</table>

Validation Accuracy:

<table>
<thead>
<tr>
<th></th>
<th>sens</th>
<th>spec</th>
<th>acc</th>
<th>ppv</th>
<th>npv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.7500000</td>
<td>0.5000000</td>
<td>0.7083333</td>
<td>0.6470588</td>
<td>0.7857143</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.9166667</td>
<td>0.8333333</td>
<td>0.8437500</td>
<td>0.8333333</td>
<td>0.8701299</td>
</tr>
<tr>
<td>Median</td>
<td>0.9166667</td>
<td>0.8333333</td>
<td>0.8750000</td>
<td>0.8571429</td>
<td>0.9230769</td>
</tr>
<tr>
<td>Mean</td>
<td>0.9333333</td>
<td>0.8611111</td>
<td>0.8972222</td>
<td>0.8781415</td>
<td>0.9328116</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>1.0000000</td>
<td>0.9166667</td>
<td>0.9583333</td>
<td>0.9230769</td>
<td>1.0000000</td>
</tr>
<tr>
<td>Max.</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
</tr>
</tbody>
</table>

Cross-validation was performed using 60 percent of the data for training. The data set was randomly split into training and testing sets 30 times.

Training Accuracy:

<table>
<thead>
<tr>
<th></th>
<th>sens</th>
<th>spec</th>
<th>acc</th>
<th>ppv</th>
<th>npv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.8333333</td>
<td>0.7222222</td>
<td>0.8611111</td>
<td>0.7826087</td>
<td>0.8571429</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.9444444</td>
<td>0.8888889</td>
<td>0.9166667</td>
<td>0.8960526</td>
<td>0.9444444</td>
</tr>
<tr>
<td>Median</td>
<td>1.0000000</td>
<td>0.9444444</td>
<td>0.9444444</td>
<td>0.9459064</td>
<td>1.0000000</td>
</tr>
<tr>
<td>Mean</td>
<td>0.9759259</td>
<td>0.9314815</td>
<td>0.9537037</td>
<td>0.9380154</td>
<td>0.9761498</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>0.9930556</td>
<td>1.0000000</td>
<td>1.0000000</td>
</tr>
<tr>
<td>Max.</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
</tr>
</tbody>
</table>

Validation Accuracy:

<table>
<thead>
<tr>
<th></th>
<th>sens</th>
<th>spec</th>
<th>acc</th>
<th>ppv</th>
<th>npv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.7500000</td>
<td>0.5833333</td>
<td>0.7083333</td>
<td>0.6666667</td>
<td>0.7777778</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.9166667</td>
<td>0.8333333</td>
<td>0.8750000</td>
<td>0.8392857</td>
<td>0.9000000</td>
</tr>
<tr>
<td>Median</td>
<td>0.9166667</td>
<td>0.9166667</td>
<td>0.9166667</td>
<td>0.9090909</td>
<td>0.9198718</td>
</tr>
<tr>
<td>Mean</td>
<td>0.9305556</td>
<td>0.8694444</td>
<td>0.9000000</td>
<td>0.8839455</td>
<td>0.9305413</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>1.0000000</td>
<td>0.9166667</td>
<td>0.9166667</td>
<td>0.9214744</td>
<td>1.0000000</td>
</tr>
<tr>
<td>Max.</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
</tr>
</tbody>
</table>

Cross-validation was performed using 60 percent of the data for training. The data set was randomly split into training and testing sets 30 times.
Training Accuracy:

<table>
<thead>
<tr>
<th></th>
<th>sens</th>
<th>spec</th>
<th>acc</th>
<th>ppv</th>
<th>npv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.777778</td>
<td>0.666667</td>
<td>0.750000</td>
<td>0.727273</td>
<td>0.764706</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.888889</td>
<td>0.736111</td>
<td>0.805556</td>
<td>0.768970</td>
<td>0.859523</td>
</tr>
<tr>
<td>Median</td>
<td>0.888889</td>
<td>0.833333</td>
<td>0.861111</td>
<td>0.842105</td>
<td>0.888889</td>
</tr>
<tr>
<td>Mean</td>
<td>0.903704</td>
<td>0.811111</td>
<td>0.854706</td>
<td>0.831659</td>
<td>0.895848</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>0.944444</td>
<td>0.888889</td>
<td>0.888889</td>
<td>0.888889</td>
<td>0.936458</td>
</tr>
<tr>
<td>Max.</td>
<td>1.000000</td>
<td>0.944444</td>
<td>0.972222</td>
<td>0.947368</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

Validation Accuracy:

<table>
<thead>
<tr>
<th></th>
<th>sens</th>
<th>spec</th>
<th>acc</th>
<th>ppv</th>
<th>npv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.500000</td>
<td>0.333333</td>
<td>0.541667</td>
<td>0.529412</td>
<td>0.571429</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.666667</td>
<td>0.604167</td>
<td>0.666667</td>
<td>0.642857</td>
<td>0.688719</td>
</tr>
<tr>
<td>Median</td>
<td>0.750000</td>
<td>0.666667</td>
<td>0.708333</td>
<td>0.720779</td>
<td>0.720779</td>
</tr>
<tr>
<td>Mean</td>
<td>0.741667</td>
<td>0.691667</td>
<td>0.716667</td>
<td>0.719780</td>
<td>0.742166</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>0.833333</td>
<td>0.750000</td>
<td>0.750000</td>
<td>0.750000</td>
<td>0.783730</td>
</tr>
<tr>
<td>Max.</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

We can tell that this method is wrong because the validation accuracy is much better than chance—which is impossible on a dataset without any true structure. The problem is that we have applied the feature selection method to the combined (training plus test) dataset, which allows information from the test data to creep into the model building step.

Now we can do it the right way, with the feature selection step included inside the cross-validation loop.

```r
> for (p in pruners) {
+   cv <- CrossValidate(model, dataset, pseudoclass, 0.6, 30,
+                       prune=p, verbose=FALSE)
+   show(summary(cv))
+ }
```

Cross-validation was performed using 60 percent of the data for training. The data set was randomly split into training and testing sets 30 times.

Training Accuracy:

<table>
<thead>
<tr>
<th></th>
<th>sens</th>
<th>spec</th>
<th>acc</th>
<th>ppv</th>
<th>npv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.944444</td>
<td>0.944444</td>
<td>0.972222</td>
<td>0.947368</td>
<td>0.947368</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>Median</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>Mean</td>
<td>0.994444</td>
<td>0.994444</td>
<td>0.994737</td>
<td>0.994737</td>
<td>0.994737</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>Max.</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

Validation Accuracy:

<table>
<thead>
<tr>
<th></th>
<th>sens</th>
<th>spec</th>
<th>acc</th>
<th>ppv</th>
<th>npv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.166667</td>
<td>0.166667</td>
<td>0.291667</td>
<td>0.285714</td>
<td>0.272727</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.416667</td>
<td>0.416667</td>
<td>0.458333</td>
<td>0.446969</td>
<td>0.454545</td>
</tr>
</tbody>
</table>

```
Median 0.5000000 0.5000000 0.5000000 0.5000000 0.5000000
Mean 0.5194444 0.4972222 0.5083333 0.5070572 0.5096763
3rd Qu. 0.6666667 0.5833333 0.5833333 0.5870098 0.5674603
Max. 0.8333333 0.8333333 0.6666667 0.7500000 0.7500000

Cross-validation was performed using 60 percent of the data for training. The data set was randomly split into training and testing sets 30 times.

Training Accuracy:

<table>
<thead>
<tr>
<th>sens</th>
<th>spec</th>
<th>acc</th>
<th>ppv</th>
<th>npv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.9444444</td>
<td>0.9444444</td>
<td>0.9722222</td>
<td>0.9473684</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
</tr>
<tr>
<td>Median</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
</tr>
<tr>
<td>Mean</td>
<td>0.9981481</td>
<td>0.9888889</td>
<td>0.9935185</td>
<td>0.9894737</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
</tr>
<tr>
<td>Max.</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
</tr>
</tbody>
</table>

Validation Accuracy:

<table>
<thead>
<tr>
<th>sens</th>
<th>spec</th>
<th>acc</th>
<th>ppv</th>
<th>npv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.2500000</td>
<td>0.1666667</td>
<td>0.2916667</td>
<td>0.2727273</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.4166667</td>
<td>0.3541667</td>
<td>0.4166667</td>
<td>0.4392361</td>
</tr>
<tr>
<td>Median</td>
<td>0.5000000</td>
<td>0.5000000</td>
<td>0.5000000</td>
<td>0.5000000</td>
</tr>
<tr>
<td>Mean</td>
<td>0.5111111</td>
<td>0.4944444</td>
<td>0.5027778</td>
<td>0.5156090</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>0.6458333</td>
<td>0.6458333</td>
<td>0.5729167</td>
<td>0.5582386</td>
</tr>
<tr>
<td>Max.</td>
<td>0.8333333</td>
<td>0.9166667</td>
<td>0.7083333</td>
<td>0.7500000</td>
</tr>
</tbody>
</table>

Cross-validation was performed using 60 percent of the data for training. The data set was randomly split into training and testing sets 30 times.

Training Accuracy:

<table>
<thead>
<tr>
<th>sens</th>
<th>spec</th>
<th>acc</th>
<th>ppv</th>
<th>npv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.6666667</td>
<td>0.6666667</td>
<td>0.8055556</td>
<td>0.7500000</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.8333333</td>
<td>0.8472222</td>
<td>0.8888889</td>
<td>0.8650794</td>
</tr>
<tr>
<td>Median</td>
<td>0.9444444</td>
<td>0.9444444</td>
<td>0.9166667</td>
<td>0.9302885</td>
</tr>
<tr>
<td>Mean</td>
<td>0.9074074</td>
<td>0.9037037</td>
<td>0.9055556</td>
<td>0.9145730</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>0.9444444</td>
<td>1.0000000</td>
</tr>
<tr>
<td>Max.</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>0.9722222</td>
<td>1.0000000</td>
</tr>
</tbody>
</table>

Validation Accuracy:

<table>
<thead>
<tr>
<th>sens</th>
<th>spec</th>
<th>acc</th>
<th>ppv</th>
<th>npv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.1666667</td>
<td>0.0833333</td>
<td>0.2500000</td>
<td>0.2727273</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.4166667</td>
<td>0.3333333</td>
<td>0.5000000</td>
<td>0.5000000</td>
</tr>
<tr>
<td>Median</td>
<td>0.5833333</td>
<td>0.4166667</td>
<td>0.5000000</td>
<td>0.5000000</td>
</tr>
<tr>
<td>Mean</td>
<td>0.5611111</td>
<td>0.4527778</td>
<td>0.5069444</td>
<td>0.5127854</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>0.6666667</td>
<td>0.6458333</td>
<td>0.5833333</td>
<td>0.5770677</td>
</tr>
<tr>
<td>Max.</td>
<td>0.9166667</td>
<td>0.9166667</td>
<td>0.7500000</td>
<td>0.8750000</td>
</tr>
</tbody>
</table>