Learning and predicting with statistical models

Kevin R. Coombes

August 4, 2017

Contents

1 Introduction 1
2 Simulated DataSet 1
 2.1 Training Data ... 2
 2.2 Test Data ... 5
3 Feature Selection 8
4 Fitting Models and Making Predictions 10
 4.1 K Nearest Neighbors .. 10
 4.2 Classification and regression trees 10
 4.3 Linear/Logistic Regression ... 12
 4.4 Compound Covariate Prediction 13
 4.5 Support Vector Machines .. 14
 4.6 Neural Networks .. 15
 4.7 Random Forests .. 17

1 Introduction

We start, as usual, by loading the appropriate package:

> library(Modeler)

2 Simulated DataSet

In order to have something to test our models against, we simulate a dataset that has enough underlying structure to make it interesting. First, we set the random seed so that the results will be reproducible.

> set.seed(234843)

Next, we define the simulation parameters. We will simulate a dataset with nFeatures rows representing genes, only nSignif of which are significantly associated with the outcome of interest. We assume that both the training set and test set come from the same population, which is actually a mixture of two types, A and B, where the probability of belonging to type B is given by pB. The significant genes are assumed to be differentially expressed between the two types, with the difference in means following a normal distribution ($\Delta \sim \text{Norm}(\delta, \sigma)$).
For cleanup purposes, we specify the names of things we can safely remove later.

```r
> paramlist <- c("nFeatures", "nSignif", "pB",
+               "delta", "sigma", "nTrain", "nTest")
```

In addition to simulating the class assignment (A or B), we will also simulate a continuous outcome that represents a probability of belonging to class B. The continuous outcome (Figure 1) will follow a beta distribution with parameters α and β.

```r
> alpha <- 0.75
> beta <- 0.95
> round(100*pbeta(seq(0.1, 0.9, 0.1), alpha, beta), 1)
[1] 17.1 28.8 39.1 48.7 57.7 66.4 74.9 83.2 91.4
```

Now we can actually start the simulation. For the differentially expressed genes, we make it equally likely that they are higher in A or higher in B.

```r
> signed <- -1 + 2*rbinom(nSignif, 1, 0.5)
```

As noted above, the magnitude of the difference follows a normal distribution.

```r
> offsets <- c(signed*rnorm(nSignif, delta, sigma), # can change in either direction
+               rep(0, nFeatures - nSignif)) # but most don't change at all
```

2.1 Training Data

To simulate the training dataset, we first simulate the continuous outcomes (interpreted as the probability of belonging to class B). These are transformed using a logit function so they lie on the entire real line.

```r
> lp <- function(p) log(p/(1-p))
> ea <- function(a) 1/(1+exp(-a))
> pOut <- rbeta(nTrain, alpha, beta)
> trainOutcome <- lp(pOut)
> trainClass <- factor(c("cyan", "magenta")
>  [1 + 1*(pOut > 0.5)])
> summary(trainClass)
```

The binary classes for the simulated samples are obtained by dichotomizing the probabilities.

```r
> # TODO: Fix this so it looks at correlation with the continuous outcome
> # instead of just differential expression between classes
> trainClass <- factor(c("cyan", "magenta")
>  [1 + 1*(pOut > 0.5)])
> summary(trainClass)
```
Figure 1: Probability of belonging to class B is simulated from this distribution, Beta(0.75, 0.95).
cyan magenta
 57 43
> isB <- trainClass=="magenta"
> summary(isB)

 Mode FALSE TRUE
 logical 57 43

Now we put together the training dataset.

> trainData <- matrix(rnorm(nFeatures*nTrain), ncol=nTrain) # pure noise
> trainData[,isB] <- sweep(trainData[,isB], 1, offsets, "+")
> trainData <- t(scale(t(trainData)))
> dimnames(trainData) <- list(paste("gene", 1:nFeatures, sep=''),
+ paste("trainsamp", 1:nTrain, sep=''))
>
2.2 Test Data

We use the same procedure to simulate the test dataset, starting with continuous outcomes.

```r
> pOut <- rbeta(nTest, alpha, beta)
> testOutcome <- lp(pOut)
```

We convert the continuous outcomes to binary class assignments.
> testClass <- factor(c("cyan", "magenta") *[1 + 1*(pOut > 0.5)])
> summary(testClass)

 cyan magenta
 57 43

> isB <- testClass=="magenta"
> summary(isB)

 Mode FALSE TRUE
 logical 57 43

And we then generate the simulated microarray data.

> testData <- matrix(rnorm(nFeatures*nTest), ncol=nTest) # pure noise
> testData[,isB] <- sweep(testData[,isB], 1, offsets, "+")
> testData <- t(scale(t(testData)))
> dimnames(testData) <- list(paste("gene", 1:nFeatures, sep=''),
+ paste("testsamp", 1:nTest, sep=''))
At this point, we can clean up the work space.

> `rm(list=paramlist)`
> `rm(pOut, isB, signed, offsets)`
> `rm(xx, yy, alpha, beta)`
> `rm(paramlist)`
3 Feature Selection

Here we implement a simple feature selection scheme. We first perform gene-by-gene t-tests on the training data to identify genes that are differentially expressed between the two classes.

> library(ClassComparison)
> mtt <- MultiTtest(trainData, trainClass)

We then use a beta-uniform-mixture (BUM) model to estimate the false discover rate (FDR).
> bum <- Bum(mtt@p.values)
> countSignificant(bum, alpha=0.01, by="FDR")
[1] 78
> countSignificant(bum, alpha=0.05, by="FDR")
[1] 91
>
> geneset <- rownames(trainData)[selectSignificant(bum, alpha=0.05, by="FDR")]
> length(geneset)
[1] 91
> trainSubset <- trainData[geneset,]
> testSubset <- testData[geneset,]

4 Fitting Models and Making Predictions

4.1 K Nearest Neighbors

Note that the KNN method works for binary class prediction, but does not work for regression.

> knnFitted <- learn(modeler3NN, trainSubset, trainClass)
> knnPredictions <- predict(knnFitted, testSubset)
> table(knnPredictions, testClass)

<table>
<thead>
<tr>
<th>testClass</th>
<th>cyan</th>
<th>magenta</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyan</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>magenta</td>
<td>0</td>
<td>43</td>
</tr>
</tbody>
</table>

> knnFitted <- learn(modeler5NN, trainSubset, trainClass)
> knnPredictions <- predict(knnFitted, testSubset)
> table(knnPredictions, testClass)

<table>
<thead>
<tr>
<th>testClass</th>
<th>cyan</th>
<th>magenta</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyan</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>magenta</td>
<td>0</td>
<td>43</td>
</tr>
</tbody>
</table>

4.2 Classification and regression trees

Classification

> rpartFitted <- learn(modelerRPART, trainSubset, trainClass)
> rpartPredictions <- predict(rpartFitted, testSubset, type='class')
> table(rpartPredictions, testClass)

<table>
<thead>
<tr>
<th>testClass</th>
<th>cyan</th>
<th>magenta</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyan</td>
<td>49</td>
<td>4</td>
</tr>
<tr>
<td>magenta</td>
<td>8</td>
<td>39</td>
</tr>
</tbody>
</table>

Regression

> rpartFitted <- learn(modelerRPART, trainSubset, trainOutcome)
> rpartPredictions <- predict(rpartFitted, testSubset)
> table(rpartPredictions > 0, testClass)
testClass
cyan magenta
FALSE 54 10
TRUE 3 33

> cor(rpartPredictions, testOutcome)
[1] 0.6316475

> temp <- lm(testOutcome ~ rpartPredictions)
4.3 Linear/Logistic Regression

Classification

> # takes too long for the vignette, because of the "step"
> # across glm fits.
> lrFitted <- learn(modelerLR, trainSubset, trainClass)
> lrPredictions <- predict(lrFitted, testSubset)
> table(lrPredictions, testClass)

Regression

> lrFitted <- learn(modelerLR, trainSubset, trainOutcome)
> lrPredictions <- predict(lrFitted, testSubset)
> table(lrPredictions > 0, testClass)

 testClass
 cyan magenta
 FALSE 34 19
 TRUE 23 24

> cor(lrPredictions, testOutcome)

[1] 0.12484

> temp <- lm(testOutcome ~ lrPredictions)
4.4 Compound Covariate Prediction

Classification only

> ccpFitted <- learn(modelerCCP, trainSubset, trainClass)
> ccpPredictions <- predict(ccpFitted, testSubset)
> table(ccpPredictions, testClass)
4.5 Support Vector Machines

Classification

> # takes too long for the vignette, because of the "step"
> # across glm fits.
> svmFitted <- learn(modelerSVM, trainSubset, trainClass)
> svmPredictions <- predict(svmFitted, testSubset)
> table(svmPredictions, testClass)

<table>
<thead>
<tr>
<th></th>
<th>cyan</th>
<th>magenta</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyan</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>magenta</td>
<td>0</td>
<td>43</td>
</tr>
</tbody>
</table>

Regression

> svmFitted <- learn(modelerSVM, trainSubset, trainOutcome)
> svmPredictions <- predict(svmFitted, testSubset)
> table(svmPredictions > 0, testClass)

<table>
<thead>
<tr>
<th></th>
<th>cyan</th>
<th>magenta</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALSE</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>TRUE</td>
<td>0</td>
<td>43</td>
</tr>
</tbody>
</table>

> cor(svmPredictions, testOutcome)

[1] 0.7775552

> temp <- lm(testOutcome ~ svmPredictions)
4.6 Neural Networks

Classification

> nnetFitted <- learn(modelerNNET, trainSubset, trainClass)

weights: 466
initial value 78.889878
final value 0.000037
converged

> nnetPredictions <- predict(nnetFitted, testSubset)
> table(nnetPredictions, testClass)

<table>
<thead>
<tr>
<th></th>
<th>cyan</th>
<th>magenta</th>
</tr>
</thead>
<tbody>
<tr>
<td>nnetPredictions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>0.9999999128699143</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.9999999128723069</td>
<td>0</td>
<td>42</td>
</tr>
</tbody>
</table>

Regression

> nnetFitted <- learn(modelerNNET, trainSubset, trainOutcome)

weights: 466
initial value 570.848014
final value 484.616805
converged

> nnetPredictions <- predict(nnetFitted, testSubset)
> table(nnetPredictions > 0, testClass)

<table>
<thead>
<tr>
<th></th>
<th>cyan</th>
<th>magenta</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALSE</td>
<td>57</td>
<td>43</td>
</tr>
</tbody>
</table>

> cor(nnetPredictions, testOutcome)

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[,1]</td>
</tr>
<tr>
<td>[1,]</td>
</tr>
<tr>
<td>NA</td>
</tr>
</tbody>
</table>

> temp <- lm(testOutcome ~ nnetPredictions)
4.7 Random Forests

Classification

```r
> rfFitted <- learn(modelerRF, trainSubset, trainClass)
> rfPredictions <- predict(rfFitted, testSubset)
> table(rfPredictions, testClass)
```
testClass
rfPredictions cyan magenta
 cyan 57 0
 magenta 0 43

Regression

> rfFitted <- learn(modelerRF, trainSubset, trainOutcome)
> rfPredictions <- predict(rfFitted, testSubset)
> table(rfPredictions > 0, testClass)

 testClass
cyan magenta
 FALSE 56 4
 TRUE 1 39

> cor(rfPredictions, testOutcome)

[1] 0.7343602

> temp <- lm(testOutcome ~ rfPredictions)